Diploma Program (Year 11 and 12) Curriculum Handbook 2025

Inspiring Great Minds

Contents

CONTENTS 2
INTRODUCTION 4
OUR VALUES AND MISSION 5
Key aspects of the IB Diploma Programme 6
The ib Diploma Programme Curriculum 6
The IB Diploma Programme Core 7
The IB LEARNER PROFILE 7
UNDERSTANDING THE IB DIPLOMA REQUIREMENTS 8
EXAMINATION RESULTS 10
THE IB DIPLOMA AND THE QCE 10
THE IB DIPLOMA AND UNIVERSITY ENTRANCE 11
How is my notional ATAR calculated in Australia? 11
What are adjustment factors? 11
CAN I GET CREDIT FOR IB SUBJECTS AT UNIVERSITY? 12
ACADEMIC INTEGRITY AND STUDENT CONDUCT 13
Collusion versus Collaboration 14
IB DIPLOMA PROGRAMME CORE 15
Creativity, Activity, Service (CAS) 15
Aims 15
Core Creativity, Activity, Service - IBO Assessment Requirements 15
Extended Essay (EE) 16
Aims 16
Core Extended Essay - IBO Assessment Requirements 16
Theory of Knowledge (TOK) 17
Aims and assessment objectives 17
Core Theory of Knowledge - IBO Assessment Requirements 17
GROUP 1 - STUDIES IN LANGUAGE AND LITERATURE 18
1.1 English A Language and Literature (SL/HL) 18
Aims 18
Syllabus Outline 19
Group 1 Language and Literature - IBO Assessment Requirements 19
1.2 Language A Literature (SL) - School Supported Self-Taught - SSST (Mother Tongue Language)20
GROUP 2 - LANGUAGE ACQUISITION 21
2.1 Modern Language B and Language ab initio 21
Aims 21
2.1.1 Modern Language B - Chinese, French, German and Japanese (SL/HL) 22
Syllabus Outline 22
Group 2 Language B (SL/HL) - IBO Assessment Requirements 22
2.1.2 LaNGUAGE AB INITIO - SpANISH (SL) 23
Syllabus Outline 23
Group 2 Language ab initio - IBO Assessment Requirements 23
2.2 CLASSICAL LANGUAGE B - LATIN (SL/HL) 24
Syllabus Outline 24
Group 2 Classical Language B-IBO Assessment Requirements 25
GROUP 3 - INDIVIDUALS \& SOCIETIES 26
3.1 Business Management (HL) 26
Aims 26
Syllabus Outline 27
Group 3 Business Management - IBO Assessment Requirements 27
3.2 Economics (HL) 27
Aims 28
Syllabus Outline 28
Group 3 Economics - IBO Assessment Requirements 28
3.3 Digital Society (HL) 29
Aims 29
Syllabus Outline. 29
Group 3 Digital Society - IBO Assessment Requirements 30
3.4 Psychology (HL) 30
Aims 31
Syllabus Outline 31
Group 3 Psychology - IBO Assessment Requirements 31
GROUP 4 - SCIENCES 32
4.1 Experimental Sciences - Biology, Chemistry, Physics, Sports, Exercise and Health Science 32
Aims 32
4.1.1 Biology (SL/HL) 33
Syllabus Outline 33
Group 4 Biology - IBO Assessment Requirements 34
4.1.2 Chemistry (SL/HL) 34
Syllabus Outline. 34
Group 4 Chemistry - IBO Assessment Requirements 35
4.1.3 Physics (SL/HL). 35
Syllabus Outline 35
Group 4 Physics - IBO Assessment Requirements 36
4.1.4 Sports, Exercise and Health Science (HL) 36
Syllabus Outline 36
Group 4 SEHS - IBO Assessment Requirements 37
4.2 Computer Science (HL) 38
Aims 38
Syllabus Outline 39
Group 4 Computer Science - IBO Assessment Requirements 39
4.3 Environmental Systems and Societies - ESS (HL) 40
Aims 40
Syllabus Outline 41
Group 4 Environmental Systems and Societies - IBO Assessment Requirements 41
GROUP 5 - MATHEMATICS. 42
Aims 43
Syllabus Outline 43
5.1 Mathematics Analysis and Approaches (SL/HL) 44
Group 5 Mathematics Analysis and Approaches - IBO Assessment Requirements 44
5.2 Mathematics Applications and Interpretation (SL/HL) 45
Group 5 Mathematics Applications and Interpretation - IBO Assessment Requirements 45
SUBJECT SELECTION 46

Introduction

Dear Parents and Carers

Students will be commencing their International Baccalaureate Diploma Programme at the beginning of next year. Each student should be continuing with the subjects they have studied in the Year 10 Diploma Preparation Programme, which commences in Term 3 of Year 10. During Term 2, Year 10 students are required to identify the level of study as either Standard Level (SL) or Higher Level (HL) for their six subjects. Students will need to have selected three SL subjects and three HL subjects to comply with Diploma requirements.

To help families make these selections, this booklet provides an overview of the curriculum as one of several strategies to ensure that students make informed choices that comply with the arrangements of the Academy and the rules of the IB Diploma Programme. While the Academy aims to offer all subjects and levels listed in this booklet, it is important to note that this will be dependent on class numbers and the Academy's staffing capacity. Some subjects may not be able to be offered if minimum numbers are not met.

Students have had access to many different sources of information to assist them with their selections and these include:

- The Senior Education and Training Plan process with the Guidance Officer and House Deans.
- Individual academic performance data.
- Subject selection presentations.
- IB Diploma Programme (Year 11 and 12) Curriculum Handbook.

Students are required to complete their IB Diploma Programme subject selection online. Details, including web address, username and password, for the online selection will be provided by email. The subjects available for selection are listed at the back in this booklet. The checklist on the subject selection page should be used as a guide to decide on your subject selections. Students should complete the online subject selection when requested. If a student wishes to discuss their chosen subjects or levels, they should meet with their House Dean.

Regards,

Tanya Haggarty
Associate Principal Academic
Queensland Academy for Science Mathematics and Technology

Our Values and Mission

Our Vision

Inspiring great minds through the provision of a world-class education that nurtures personal excellence and develops young people who are able to contribute positively to an ever-changing world.

Our Values

We value the ten aspirational qualities of the International Baccalaureate (IB) Learner Profile, which go beyond academic success to instil a sense of personal excellence, striving to improve in every aspect of our lives. The aim is not perfection but instead to achieve our potential; and flourishing as defined in positive psychology.

Inquirers
Knowledgeable
Thinkers
Communicators
Principled

Open-minded
Caring
Risk-takers
Balanced
Reflective

Our Mission

To achieve the IB aims of developing inquiring, knowledgeable and caring young people who help to create a better and more peaceful world through intercultural understanding and respect. Through the IB, we develop challenging programmes of international education and rigorous assessment. These programmes encourage our students to become active, compassionate and lifelong learners who understand that other people, with their differences, can also be right. (Adapted from the IB Mission Statement)

Key aspects of the IB Diploma Programme

The International Baccalaureate (IB) Diploma Programme is a rigorous and academically challenging pre-university curriculum for students aged from 16 to 19 years. The Programme emphasises the importance of breadth and depth in academic study whilst maintaining a focus on the very way we understand knowledge through the Theory of Knowledge course. Students are encouraged to become active global citizens and understand the importance of care and compassion in an increasingly globalised world. The Diploma encourages students to develop their physical, emotional, intellectual and ethical selves and as such is well regarded and recognised by the world's leading universities.

The IB Diploma Programme Curriculum

The IB curriculum can be best understood through the IB Circle (Figure 1). Students must study six subjects when undertaking the Diploma Programme, with one subject being chosen from each of Groups 1 to 5 . The sixth subject may come from Group 4 or 6 . Three subjects must be studied at Standard Level (equivalent of 150 teaching hours each subject) and three at Higher Level (equivalent of 240 teaching hours each subject).

During the two-year Programme students will also complete an Extended Essay, follow a Theory of Knowledge course and participate in the Creativity, Activity, Service course.

The International Baccalaureate Organisation (IBO) has comprehensive guidelines that must be adhered to for students to receive the IB Diploma qualification. A summary of these requirements is provided in this guide.

Figure 1: The IB Diploma Programme curriculum overview

The IB Diploma Programme Core

At the core of the Diploma Programme are the three course requirements that broaden the Diploma Programme experience and require students to apply their knowledge and understanding. The core includes the Theory of Knowledge course, the Extended Essay, and Creativity, Activity, Service.

- The Extended Essay is a requirement for students to engage in independent research through an in-depth study of a question relating to one of the subjects they are studying.
- Theory of Knowledge is a course designed to encourage each student to reflect on the nature of knowledge by critically examining different ways of knowing (perception, emotion, language and reason) and different kinds of knowledge (scientific, artistic, mathematical and historical).
- Creativity, Activity, Service requires that students actively learn from the experience of doing real tasks beyond the classroom. Students can combine all three components or do activities related to each one of them separately.

These core requirements will be explored in detail in this guide.

The IB learner profile

The aim of all IB Programmes is develop international mindedness in students who, recognising their common humanity and shared guardianship of the planet, help to create a better and more peaceful world. IB learners strive to be:

$\left.$| Inquirers | They develop their natural curiosity. They acquire the skills necessary to conduct inquiry
 and research and show independence in learning. They actively enjoy learning, and this
 love of learning will be sustained throughout their lives. |
| :--- | :--- |
| Knowledgeable | They explore concepts, ideas and issues that have local and global significance. In so doing,
 they acquire in-depth knowledge and develop understanding across a broad and balanced
 range of disciplines. |
| Thinkers | They exercise initiative in applying thinking skills critically and creatively to recognize and
 approach complex problems, and make reasoned, ethical decisions. |
| Communicators | They understand and express ideas and information confidently and creatively in more than
 one language and in a variety of modes of communication. They work effectively and
 willingly in collaboration with others. |
| Principled | They act with integrity and honesty, with a strong sense of fairness, justice and respect for
 the dignity of the individual, groups and communities. They take responsibility for their own
 actions and the consequences that accompany them. |
| Open-minded | They understand and appreciate their own cultures and personal histories, and are open to
 the perspectives, values and traditions of other individuals and communities. They are
 accustomed to seeking and evaluating a range of points of view and are willing to grow from
 the experience. |
| Caring | They show empathy, compassion and respect towards the needs and feelings of others.
 They have a personal commitment to service, and act to make a positive difference to the |
| lives of others and to the environment. | |\(\left|\begin{array}{ll}They approach unfamiliar situations and uncertainty with courage and forethought and have

the independence of spirit to explore new roles, ideas and strategies. They are brave and

articulate in defending their beliefs.\end{array}\right|\)| They understand the importance of intellectual, physical and emotional balance to achieve |
| :--- | :--- |
| personal well-being for themselves and others. | \right\rvert\, | They give thoughtful consideration to their own learning and experience. They are able to |
| :--- |
| assess and understand their strengths and limitations in order to support their learning and |
| personal development. |,

Understanding the IB Diploma Requirements

The following information provides a 'quick reference' summary of key elements of the IB Diploma Programme requirements. The IB requires all candidates and schools to adhere to these Programme guidelines without exception.

- A student must engage in the full programme of subjects from each of the six groups. The only exception to this is the option to study the sixth subject by selecting a second subject from one of the other groups (at QASMT, students can select a second Group 3 or 4 or a Group 6 subject).
- A student must complete all core Programme requirements. This includes successful completion of:
- Creativity, Activity, Service.
- Theory of Knowledge.
- Extended Essay.

Higher Level / Standard Level Subjects

- Of the six subjects studied, a minimum of three (3) must be studied at Higher Level and the remainder at Standard Level.
- The difference in Higher / Standard Level is the number of teaching hours required.
- Higher Level (HL)
240 hours
- Standard Level (SL)
150 hours
- Different subjects differentiate between the HL / SL courses in different ways:
- Core standard course in both with additional topics in HL
- The same topics in each but covered to a different depth
- Differing assessment requirements

Subject Grading

- Achievement in each group subject is graded from a 7 (highest) to a 1 (lowest).
- HL / SL subjects are treated in the same way when contributing to the overall Diploma score (i.e., a 6 grading in an SL subject is not worth less than a 6 grading in the equivalent HL subject).
- Inner Core subjects, Theory of Knowledge and Extended Essay are graded from A to E.
- CAS is graded as satisfactory or unsatisfactory.
- A maximum score of 45 can be achieved in a Diploma.
- 6 subjects x grading of up to 7

$$
\begin{aligned}
& =42 \text { points } \\
& =3 \text { points } \\
& =45 \text { points total }
\end{aligned}
$$

Achieving the Diploma Qualification

- The Diploma Programme requires that students meet a number of requirements. These requirements are summarised in the table below.
- A student who does not successfully complete the Diploma may retake assessment within the IB up until 12 months after the Year 12 November examinations. The two opportunities coincide with the May IB examination session and the following November session. There is a fee incurred for all retakes.

Table 1: Conditions for Diploma Qualification Award

Criteria	IB Diploma Score (/45)
CAS requirements are met	Satisfactory
Total points	$>=24$
TOK and EE minimum grade	D
Subject minimum grade	2
No 2 grades in subjects	Maximum 2 subjects
No 3 grades in subjects	Maximum 3 subjects
Higher Level (HL) points	$>=12$
Standard Level (SL) points	$>=9$

Award of Inner Core Points

- Up to three (3) Inner Core points can be awarded from the successful completion of the Extended Essay and Theory of Knowledge course.
- Points are awarded according to the grade combination of the Extended Essay and Theory of Knowledge course according to the following matrix:

Figure 2: IB Diploma Inner Core Points Matrix.

Examination Results

Examination results are available in mid-December following the November examination session. Student results are released directly to QTAC (Queensland Tertiary Admissions Centre), UAC (Universities Admissions Centre - NSW \& ACT) and VTAC (Victorian Tertiary Admissions Centre). Students wishing to have their results released to other admissions centres or universities are required to liaise with the IB DP Coordinator in person well before their examination session.

Students successfully completing the Diploma Programme will receive their Diploma in late March following the November examination session. Each student's Diploma will indicate the grade a candidate has been awarded for each subject, including the additional Diploma requirements of Theory of Knowledge and the Extended Essay. The results will also indicate the successful completion of Creativity, Activity, Service and total number of points for the qualification award.

The IB Diploma and the QCE

Students studying the IB Diploma Programme in Queensland can also gain a second qualification parallel to their Diploma studies. This qualification is the Queensland Certificate of Education or QCE. Below is information pertaining to the QCE and its relationship to the IB Diploma Programme.

- The Queensland Curriculum and Assessment Authority (QCAA) issues the QCE qualification whilst the International Baccalaureate Organisation (IBO) issues the IB Diploma qualification.
- The IBO sends the results of students directly to the QCAA.
- The QCE is issued by the QCAA twice a year in December (for most Queensland students) and July.
- There are set criteria for obtaining the IB Diploma and separate criteria for the QCE. In most cases, if a student achieved the Diploma, they would achieve the QCE, but there are exceptions. A student may receive the Diploma, but not the QCE. Likewise, a student may receive a QCE, but not a Diploma.
- The QCE requires students to show a literacy and numeracy standard. This criterion is satisfied by achieving a grade 4 level of achievement in an IB Mathematics or English course, or a grade 3 and having achieved a grade of 4 or higher for the Internal Assessment component.
- A student's QCE account remains open for nine (9) years but closes as soon as the requirements have been met and the QCE issued.
- Tertiary entrance does not depend on the attainment of the QCE. In most cases tertiary entrance depends on the achievement level within the Programme being studied.
- All students have a learning account with the QCAA which can be accessed through the Career Information Service website. Students use their LUI number and password. All QASMT students will be issued with their account details once available. This account shows the subjects they are studying and any courses they may have completed, e.g., AMEB Level 5. The registered learning organisation responsible the delivery of that course submits these results to the QCAA directly (e.g., South Bank Institute for Certificate III qualification).

The IB Diploma and university entrance

International Baccalaureate examinations are accepted around the world as a qualification for university entrance. Since 1969, IB students have entered over 3,300 universities in Europe, the Americas, Asia, Africa, and Australia, and the list of institutions accepting IB students, which includes the most prestigious institutions in 90 countries throughout the world, is growing every year.

Many university admissions personnel have stated that they prefer IB students because the IB course develops a variety of skills needed for university study, and successful IB graduates have already demonstrated the ability to work at this level. In addition, IB students, having studied a range of subjects, can make a more informed choice of undergraduate programs. Many employers, too, recognise the value of analytical skills, flexibility and adaptability, all of which are stressed in the IB Programme. Thus, the IB Programme offers not only preparation for university, but also for life after university. The IB Programme is a pre-university course which requires that each student design a course suited to his or her needs and interests.

Individual university websites should be consulted to determine the entrance processes required. In Australia, selection to university for domestic students is most commonly done through the tertiary admission centres for each state.

- Queensland Centre: Queensland Tertiary Admissions Centre (QTAC)
- New South Wales/ACT Centre: University Admissions Centre (UAC)
- Victoria Centre: Victorian Tertiary Admissions Centre (VTAC)
- South Australia/NT Centre: South Australian Tertiary Admissions Centre (SATAC)
- Western Australia Centre: Tertiary Institutions Service Centre (TISC)

How is my notional ATAR calculated in Australia?

Across Australia, a common national measure of Year 12 student achievement is used in the tertiary selection process. Expressed in a scale extending from 99.95 (highest) to 30 (lowest), this common national measure is called the Australian Tertiary Admissions Rank (ATAR). A student's IB Diploma score (out of 45) is converted to a notional score related to the common national measure for the purposes of tertiary entrance in Australia. This conversion and other information about how to convert IB scores to a notional ATAR is available at https://www.qtac.edu.au/ib-studies/. It is important to note that a notional ATAR is only awarded to students who achieve an IB Diploma. If an IB Diploma is not attained, alternative entry pathways to university will need to be used.

Our Guidance Officer, Mrs Katrina Judge, also offers advice to all students and families on this conversion. Note that ATAR conversions do change each year and are usually updated by ACTAC in December after the November examination is completed.

What are adjustment factors?

Universities recognise various challenges during high school education by crediting additional points to a student's selection rank (ATAR), assisting them to meet course entry requirements.

Adjustment factors schemes are currently operated by many Australian universities including Griffith University, Queensland University of Technology, and The University of Queensland, for students who intend to apply to commence tertiary study at these institutions in any given year. Numerous other universities outside of Queensland also offer similar schemes. Schemes vary among universities, so it is important to investigate each of the university admissions websites for current details of adjustment factors/bonus rank schemes. Adjustment factors are awarded by universities following the submission of the QTAC application in Queensland.

Students may gain several adjustment factors. The maximum number of adjustment factors awarded will depend on the institution at which tertiary study is being applied for.
At the University of Queensland, the maximum number of adjustment factors for any one student is five. Two adjustment factors are awarded for study of a language other than English and the maximum enrichment adjustment is one point, irrespective of how many subjects have been studied.

Adjustment factors are applied after the IB score has been converted to an ATAR. Adjustment factor schemes are regularly reviewed, and students are encouraged to regularly check university admissions sites for details of updated schemes.

Can I get credit for IB Subjects at university?

Students who obtain minimum grades for some International Baccalaureate Diploma Programme subjects will be able to access course credits or exemptions at university. Much like the adjustment factor schemes, these arrangements may differ slightly for each institution and as such, students should closely review the admissions websites for up-to-date information on course credit arrangements.

Details of credit for International Baccalaureate study at The University of Queensland can be found at https://study.uq.edu.au/admissions/undergraduate/check-credit-eligibility. Details of credit for International Baccalaureate study at QUT can be found at https://www.qut.edu.au/study/applying/advanced-standing.
Details of credit for International Baccalaureate study at Griffith University can be found at https://www.griffith.edu.au/apply/credit-transfer/international-baccalaureate-diploma.
Details for other universities can be found on their individual websites.

Academic Integrity and Student Conduct

The Queensland Academy for Science, Mathematics and Technology (QASMT) supports the IBO in its approach to academic integrity which promotes the development of a set of values around personal integrity in the areas of teaching, learning and assessment.

Malpractice in academic integrity is defined as behaviour that may result in a candidate gaining an unfair advantage in an assessment component. Areas of malpractice include:

- intentional plagiarism - the representation of another's work as your own.
- unintentional plagiarism - the careless paraphrasing and citing of source material such that improper or misleading credit is given.
- collusion - allowing your work to be copied by another, and therefore supporting and facilitating malpractice.
- duplication - submitting the same work for different IB assessment components.
- any other area where a student can gain an unfair advantage - such as cheating in an exam, falsifying a CAS record, fabricating data for an assignment or practical investigation, or using Al in an unethical manner.

To assist students in understanding the requirements surrounding academic integrity, it is the responsibility of all teachers to advise students on what constitutes malpractice in their subject area. Additional support will be provided through Extended Essay sessions and by the IB Coordinator.

Students should take note of the following extract from the IBO's Academic Integrity ${ }^{1}$ publication:
"The candidate is ultimately responsible for ensuring that all work submitted for assessment is authentic, with the work or ideas of others fully and correctly acknowledged. Candidates are expected to comply with all internal school deadlines: this is for their own benefit and may allow time for revising work that is of doubtful authorship before the submission of the final version."

Students must acknowledge all ideas and works of other persons; this includes:

- rendition of another person's words presented in a new style and integrated grammatically in the writing.
- all internet sources, email messages, website, blogs, chats and forums.
- electronic media, including generation from an artificial intelligence (AI) platform.
- sources of all photographs, maps, illustrations, computer programs, data, graphs, audio-visual materials.
- verbatim (word-for-word) quotes.
- works of art including music, film, dance, theatre arts and visual arts.

QASMT uses the APA (American Psychological Association) style of referencing. Students are encouraged to use Microsoft Word's referencing tool (which includes the APA style) to achieve consistency and accuracy in referencing. Teachers should be fully aware of the APA referencing conventions and actively use it when supplying materials to students. Support materials can be found at https://org.slasa.asn.au/apa and https://web.library.uq.edu.au/node/4221/1.
Students are ultimately responsible for ensuring their submitted work is authentic, but teachers play a vital role in assisting with early detection of plagiarism. If a teacher suspects that a student's draft submission is in breach of the principles of academic integrity, they must draw the student's attention

[^0]to the risks associated with submitting the piece of assessment. Once a final piece of assessment has been submitted, it cannot be retracted. The teacher is responsible for notifying the IB Coordinator of the breach.

QASMT has subscribed to Turnitin, an online plagiarism detection tool to assist students in achieving academic integrity in their submissions. This tool is to assist students in their referencing of assignment work. The IBO randomly check student assessment against the Turnitin database. Students at QASMT access Turnitin through our Daymap portal.

Students can submit their assignment to Turnitin several times, to check for deficiencies in their acknowledgements and to reassess their referencing before their final submission is due. All teachers need to become familiar with the program, and all student assessment should be submitted to Turnitin. Appropriate training and assistance is available to all students and staff through the Head of Department Technology.

A student found guilty of academic misconduct will not receive their IB Diploma qualification as this is identified as a failing condition by the IBO. For further details, please read the QASMT Academic Integrity Policy available on the school website.

Collusion versus Collaboration

Collaboration includes working in groups to achieve a shared goal and is common in a form of assessment in which all members of the group are expected to participate equally (e.g., Collaborative Sciences Project). Collaboration is about sharing ideas, data and knowledge to enhance understanding. This may be through group discussions about a text, a problem or an experiment. Obtaining assistance about the structure, content etc. from a tutor, but doing the work yourself is to collaborate. Group work will often involve collaboration and may be face-to-face, in discussion boards, blogs and wikis. The protocols of acknowledging sources still apply.

Collusion is the deliberate misrepresentation of another's work as your own with the intention to mislead. Collusion would include, but is not limited to:

- using the same data in the same way and submitting all or part of an IA for two or more students.
- having a tutor write your work.
- handing on an assignment to another person and that person copying your work (whether you are aware of this intention or not).
- Permissible collaboration includes:
- discussion with other students regarding issues raised by an assessment item.
- discussion with other students regarding how to address the issues raised by an assessment item.
- collaborate in the location of, and sharing, sources of
 information relevant to the item of assessment.

IB Diploma Programme Core

Diploma candidates must successfully complete all three core requirements:

- Creativity, Activity, Service (CAS)
- Extended Essay (EE)
- Theory of Knowledge (TOK)

While CAS achievement is monitored, a grade is not awarded. Candidates are deemed 'Satisfactory' or 'Unsatisfactory' for the CAS component of their course.

For TOK and EE the highest grade that can be awarded is an 'A.' The award of the three (3) possible bonus points is determined according to the IB Diploma Bonus Points Matrix.

Creativity, Activity, Service (CAS)

Within the Diploma Programme, CAS provides the main opportunity to develop many of the attributes described in the IB learner profile. For this reason, the aims of CAS have been written in a form that highlights their connections with the IB learner profile. The three strands of CAS which are often interwoven with activities are characterised as:

- Creativity - arts or other experiences that involve creative thinking.
- Activity - physical activity contributing to a healthy lifestyle.
- Service - all unpaid voluntary exchange that has a learning benefit for the student. The rights, dignity and autonomy of all those involved are respected.

Aims

The CAS Programme aims to develop students who are:

- reflective thinkers - they understand their own strengths and limitations, identify goals and devise strategies for personal growth.
- willing to accept new challenges and new roles.
- aware of themselves as members of communities with responsibilities towards each other and the environment.
- active participants in sustained, collaborative projects.
- Balanced - they enjoy and find significance in a range of activities involving intellectual, physical, creative and emotional experiences.

Core Creativity, Activity, Service - IBO Assessment Requirements

	Assessment
	CAS Requirements
	-All eight outcomes addressed Quality reflections on activities (written, audio or visual) are required and must be accompanied by evidence and a supervisor's report.
Creativity,	Minimum of 9 activities over 18 months with a balance between
Activity and	
Service	Creativity, Activity, and Service. While hours are not "counted" it is expected that students will spend approximately 3-4 hours per school week equates to approximately 150 hours over 18 months)
	-Students will participate in at least three interviews with CAS advisor or CAS Coordinator over 18 months. Minimum of one project which must cover two areas of CAS, be of significant duration and be collaborative.

Extended Essay (EE)

The Extended Essay is an in-depth focused topic chosen from the list of approved Diploma Programme subjects (normally one of the student's six chosen subject for the IB Diploma). It provides students with an opportunity to engage in personal research in a topic of their own choice, under the guidance of a supervisor (a teacher in the Academy usually). This leads to a major piece of formally presented, structured writing, in which ideas and finds are communicated in a reasoned and coherent manner, appropriate to the subject chosen. Students begin the research process during Year 11 and submit in the second year of IB study.

Aims

The aims of the Extended Essay are to provide students with the opportunity to:

- pursue independent research on a focused topic.
- develop research and communication skills.
- develop the skills of creative and critical thinking.
- engage in a systematic process of research appropriate to the subject.
- experience the excitement of intellectual discovery.

In working on the Extended Essay, students are expected to:

- plan and pursue a research project with intellectual initiative and insight.
- formulate a precise research question.
- gather and interpret material from sources appropriate to the research question.
- structure a reasoned argument in response to the research question based on the material gathered.
- present their Extended Essay in a format appropriate to the subject, acknowledging sources in one of the established academic ways.
- use the terminology and language appropriate to the subject with skill and understanding
- apply analytical and evaluative skills appropriate to the subject, with an understanding of the implications and the context of their research.

Core Extended Essay - IBO Assessment Requirements

	Assessment	Weight
	Essay The 4000-word essay is marked out of 34 and is graded A to E . The essay is marked according to the criteria set by the IBO.	N/A
Extended Essay	Reflections on planning and progress form Students will have three reflection sessions with their supervisor, one early in the process, an interim meeting and then a final viva voce. The purpose of these sessions is to clarify the direction of essay and reflect on what has been learned. After each reflection, session candidates must record the reflections and the supervisor must sign and date the assigned form. This form will be submitted together with the completed EE for assessment under Criterion E.	N/A

Theory of Knowledge (TOK)

The TOK course plays a special role in the Diploma Programme by providing an opportunity for students to reflect on the nature, scope and limitations of knowledge and the process of knowing. In this way, the main focus of TOK is not on students acquiring new knowledge but on helping students to reflect on, and put into perspective, what they already know. TOK underpins and helps to unite the subjects that students encounter in the rest of their DP studies. It engages students in explicit reflection on how knowledge is arrived at in different disciplines and areas of knowledge, on what these areas have in common and the differences between them.

Aims and assessment objectives

The aims of the TOK course are to:

- to encourage students to reflect on the central question, "How do we know that?", and to recognize the value of asking that question.
- to expose students to ambiguity, uncertainty and questions with multiple plausible answers.
- to equip students to effectively navigate and make sense of the world, and help prepare them to encounter novel and complex situations.
- to encourage students to be more aware of their own perspectives and to reflect critically on their own beliefs and assumptions.
- to engage students with multiple perspectives, foster open-mindedness and develop intercultural understanding.
- to encourage students to make connections between academic disciplines by exploring underlying concepts and by identifying similarities and differences in the methods of inquiry used in different areas of knowledge.
- to prompt students to consider the importance of values, responsibilities and ethical concerns relating to the production, acquisition, application and communication of knowledge.

Having followed the TOK course, students should be able to:

- demonstrate TOK thinking through the critical examination of knowledge questions.
- identify and explore links between knowledge questions and the world around us.
- identify and explore links between knowledge questions and areas of knowledge.
- develop relevant, clear and coherent arguments.
- use examples and evidence effectively to support a discussion.
- demonstrate awareness and evaluation of different points of view.
- consider the implications of arguments and conclusions.

Core Theory of Knowledge - IBO Assessment Requirements

	Assessment	Weight
TOK	Internal Assessment (externally moderated) - TOK exhibition (10 marks) - For this component, students are required to create an exhibition that explores how TOK manifests in the world around us.	33\%
	External Assessment - TOK essay on a prescribed title (10 marks) - For this component, students are required to write an essay in response to one of the six prescribed titles that are issued by the IB for each examination session.	67\%

Group 1 - Studies in Language and Literature

1.1 English A Language and Literature (SL/HL)

In English A Language and Literature, students read, interpret and analyse a wide range of literary and non-literary texts from a range of historical, cultural and linguistic contexts. The nature of language and the ways in which it shapes, and is influenced by identity and culture, is explored and examined over the course of the two-year programme. In addition, students develop knowledge and understanding of literary theory, sociolinguistics, media institutional practices and critical discourse analysis.

Three Areas of Exploration formulate the programme. They are:

- Readers, Writers and Texts.
- Time and Space.
- Intertextuality: connecting texts.

Students examine the nature of language and literature; and investigate how and why texts are constructed. The significance of cultural context in which the production and reception of texts is explored. Intertextual relationships are examined in relation to various topics, thematic concerns, generic conventions, modes of literary traditions. Critical responses are developed based an understanding of the complex relationships among texts.

The study of English A Language and Literature is also instrumental in developing an awareness and understanding of the self and how it relates to others. Through the study of texts written originally in the language studied and in translation, students gain an understanding of the ways in which different languages and literatures represent the world, and how these can reflect and create diverse identities. Students become aware that representations of the world vary across cultures, and are encouraged to consider the reasons why, attaining a better understanding of the different ways in which people experience and represent the world.

Aims

The aims of all subjects in studies in language and literature are to enable students to:

- engage with a range of texts, in a variety of media and forms, from different periods, styles, and cultures.
- develop skills in listening, speaking, reading, writing, viewing, presenting and performing.
- develop skills in interpretation, analysis and evaluation.
- develop sensitivity to the formal and aesthetic qualities of texts and an appreciation of how they contribute to diverse responses and open up multiple meanings.
- develop an understanding of relationships between texts and a variety of perspectives, cultural contexts, local and global issues, and an appreciation of how they contribute to diverse responses and open up multiple meanings.
- develop an understanding of the relationships between studies in language and literature and other disciplines.
- communicate and collaborate in a confident and creative way.
- foster a lifelong interest in and enjoyment of language and literature.

Syllabus Outline

SL students are required to study four literary works and several non-literary texts that is equivalent in teaching and learning time, whereas HL students are required to study six literary works and a number of non-literary texts that is equivalent in teaching and learning time. Paper 1 and 2 examinations for SL and HL have a similar format with some additional requirements for HL students. As part of their coursework, HL students will also submit an essay that requires students to explore a line of inquiry in relation to a studied non-literary text or texts, or a literary text or work. The outcome of this exploration is a 1200-1500 word essay in which HL students are expected to demonstrate a deeper understanding of the nature of linguistic or literary study.

The learner portfolio is also a central element of the Language A: Language and Literature course and is mandatory for all students. It is an individual collection of student work done throughout the two years of the course. The work carried out for the learner portfolio forms the basis of preparation for the assessment, although the portfolio itself will not be directly assessed or moderated by the IB. However, it is a fundamental element of the course, providing evidence of the student's work and a reflection of their preparation for the assessment components.

Group 1 Language and Literature - IBO Assessment Requirements

	Assessment	Weight
	Internal Assessment (externally moderated) Individual oral (15 minutes) Supported by an extract from one non-literary text and one from a Standard Level literary work, students will offer a prepared response of 10 minutes, followed by 5 minutes of questions by the teacher.	30%
	External Assessment (3 hours) Paper 1: Guided textual analysis (1 hour 15 minutes) The paper consists of two non-literary passages, from two different text types, each accompanied by a question. Students choose one passage and write an analysis of it. Paper 2: Comparative essay (1 hour 45 minutes) The paper consists of four general questions. In response to one question students write a comparative essay based on two works studied in the course.	35%
	Internal Assessment Individual Oral (externally moderated) Individual oral (15 minutes) Supported by an extract from both one non-literary text and one from a literary work, students will offer a prepared response of 10 minutes, followed by 5 minutes of questions by the teacher.	20%
	External Assessment (4 hours) Written Essay	35%
Students submit an essay on one non-literary text or a collection of non-literary texts by one same author, or a literary text or work studied during the course. The essay must be 1200-1500 words in length. Paper 1: Guided textual analysis (2 hours 15 minutes) The paper consists of two non-literary passages, from two different text types, each accompanied by a question. Students write an analysis of each of the passages. Paper 2: Comparative essay (1 hour 45 minutes) The paper consists of four general questions. In response to one question students write a comparative essay based on two works studied in the course.	20%	

1.2 Language A Literature (SL) - School Supported SelfTaught - SSST (Mother Tongue Language)

Information about the School Supported Self-Taught - SSST (Mother Tongue Language) programme for Language A Literature SL has previously been supplied to parents and students. Participation in this course is by approval only, any queries should be directed to the IB Coordinator.

Group 2 - Language Acquisition

Language acquisition consists of two modern language courses - Language B and Language ab initio, offered in a number of languages, and a classical languages course that is offered in Latin. Language B and Language ab initio are language acquisition courses designed to provide students with the necessary skills and intercultural understanding to enable them to communicate successfully in an environment where the language studied is spoken and in the classical languages to experience ancient texts in the most immediate way possible. This process allows the learner to go beyond the confines of the classroom, expanding their awareness of the world and fostering respect for cultural diversity.

The two modern language courses - Language B and Language ab initio - develop students' linguistic abilities through the development of receptive, productive and interactive skills.

The classical languages course focuses on the study of the language, literature and culture of the classical world.

2.1 Modern Language B and Language ab initio

Aims

The aims of studies in Language B and Language ab initio enable students to:

- develop international mindedness through the study of languages, cultures, and ideas and issues of global significance.
- enable students to communicate in the language they have studied in a range of contexts and for a variety of purposes.
- encourage, through the study of texts and through social interaction, an awareness and appreciation of a variety of perspectives of people from diverse cultures.
- develop students' understanding of the relationship between the languages and cultures with which they are familiar.
- develop students' awareness of the importance of language in relation to other areas of knowledge.
- provide students, through language learning and the process of inquiry, with opportunities for intellectual engagement and the development of critical- and creative-thinking skills.
- provide students with a basis for further study, work and leisure through the use of an additional language.
- foster curiosity, creativity and a lifelong enjoyment of language learning.

The following assessment objectives are common to both modern Language B and Language ab initio. The level of difficulty of the assessments and the expectations of student performance on the tasks, are what distinguishes the modern language acquisition courses. The objectives are to:

- communicate clearly and effectively in a range of contexts and for a variety of purposes.
- understand and use language appropriate to a range of interpersonal and/or intercultural contexts and audiences.
- understand and use language to express and respond to a range of ideas with fluency and accuracy.
- identify, organize and present ideas on a range of topics.
- understand, analyse and reflect upon a range of written, audio, visual and audio-visual texts.

2.1.1 Modern Language B - Chinese, French, German and Japanese (SL/HL)

Language B is a language acquisition course designed for students with some previous experience of the target language. In the Language B course, students further develop their ability to communicate in the target language through the study of language, themes and texts. In doing so, they also develop conceptual understandings of how language works, as appropriate to the level of the course.

At both levels of Language B (SL and HL), students learn to communicate in the target language in familiar and unfamiliar contexts. They describe situations, narrate events, make comparisons, explain problems, and state and support their personal opinions on a variety of topics relating to course content. The study of two literary works originally written in the target language is required only at Language B HL. The distinction between Language B SL and HL can also be seen in the level of competency the student is expected to develop in the receptive, productive and interactive skills.

Syllabus Outline

In the Language B course, students develop the ability to communicate in the target language through the study of language, themes and texts. In doing so, they also develop conceptual understandings of how language works. Five prescribed themes are common to the syllabus of Language B and Language ab initio. The themes provide relevant contexts for study at all levels of language acquisition in the DP, and opportunities for students to communicate about matters of personal, local or national, and global interest.

The five prescribed themes are:

- identities
- experiences
- human ingenuity
- social organization and
- sharing the planet.

Group 2 Language B (SL/HL) - IBO Assessment Requirements

Assessment	Weight	
	Internal Assessment (externally moderated) Individual Oral (12-15 minutes)	25%
Standard Level	External Assessment Paper 1 - Productive skills - writing (1 hour 15 minutes) Paper 2 - Receptive skills - separate sections for listening and reading Listening comprehension (45 minutes) Reading comprehension (1 hour)	25%
Higher Level	Internal Assessment (externally moderated) Individual Oral (12-15 minutes)	25%
	External Assessment Paper 1 - Productive skills - writing (1 hour 30 minutes)	25%

	Paper 2 - Receptive skills - separate sections for listening and reading Listening comprehension (1 hour) Reading comprehension (1 hour)	25% 25%

2.1.2 Language ab initio - Spanish (SL)

Language ab initio courses are language learning courses for beginners, designed for students who have limited or no previous experience of learning the target language. The main focus of the course is on the acquisition of language required for purposes and situations usual in everyday social interaction. Language ab initio courses are only available at Standard Level.

Language ab initio courses aim to develop a variety of linguistic skills and a basic awareness of the target culture(s) through the study of a core syllabus and language-specific syllabuses.

Prescribed topics:

Identities	Experiences	Human Ingenuity	Social organization	Sharing the planet
- Personal attributes - Personal relationships - Eating and drinking - Physical wellbeing	- Daily routine - Leisure - Holidays - Festivals and celebrations	- Transport - Entertainment - Media - Technology	- Neighbourhood - Education - The workplace - Social issues	- Climate - Physical geography - Environment - Global issues

Syllabus Outline

Because a structured learning environment is crucial for the success of beginning language learners, the Language ab initio syllabus prescribes four topics for each of the five prescribed themes. Thus, in total there are 20 topics that must be addressed in the Language ab initio course.

Group 2 Language ab initio - IBO Assessment Requirements

Assessment	Weight	
	Internal Assessment (externally moderated) Individual Oral (7-10 minutes)	25%
Standard Level	External Assessment Paper 1 - Productive skills - writing (1 hour) Paper 2 - Receptive skills - separate sections for listening and reading Listening comprehension (45 minutes) Reading comprehension (1 hour)	25%

2.2 Classical Language B - Latin (SL/HL)

The aims of the classical languages course are to:

- enable students to develop knowledge and skills to engage with, use, and enjoy the classical language.
- enable students to understand and make connections between texts written in the classical language.
- provide students with an appreciation of both the classical world and the perspectives of Roman and ancient Greek people.
- develop students' appreciation of the ongoing relevance and the literary merits of classical texts and the issues raised in them.
- develop students' ability to engage in inquiry that involves both texts in the classical language and other products of classical cultures or their traditions.
- improve students' understanding of their own language(s) and other languages as a basis for work and for further study.

At the end of the classical languages course, students will be able to:

- demonstrate, in a variety of ways, their understanding of the classical language and texts read in the classical language.
- interpret and analyse texts written in the classical language through their knowledge of literary, stylistic, historical and cultural contexts.
- synthesize evidence from a variety of primary, secondary, and reference sources.
- construct arguments supported by relevant analysis of texts in the classical language and of other products of classical cultures or their traditions.

In the HL course, the assessments will measure objectives 1, 2 and 3 using prose and verse texts written in the classical language.

Syllabus Outline

The classical languages course, through which students develop skills related to the study of the classical language, its literature, and the broader study of antiquity, is divided into three areas of exploration. The areas of exploration act as lenses through which students and teachers consider the sources and texts encountered during the course. The areas of exploration are:

- meaning, form, and language.
- text, author, and audience.
- time, space, and culture.

Group 2 Classical Language B-IBO Assessment Requirements

Assessment	Weight	
	Internal Assessment (externally moderated) Research dossier	30%
	External Assessment Standard Level Haper 1 - Reading comprehension and translation (1 hour 30 minutes) Paper 2 - Short answer questions and extended response (1 hour 30 minutes)	35%
	Internal Assessment (externally moderated) Research dossier	35%
	External Assessment Paper 1 - Reading comprehension, translation and guided analysis (2 hours) Paper 2 - Short answer questions and extended response (1 hour 30 minutes)	30%
	Higher Level Composition Original composition in prose Latin	30%

Group 3 - Individuals \& Societies

The aim of all subjects in Group 3, Individuals and Societies is to:

- explore and critically engage with multiple perspectives and ways of thinking
- investigate and evaluate the interactions between individuals and societies
- think and act as informed and principled individuals in societies
- understand and value the variety and diversity of the human experience across time and place
- encourage the systematic and critical study of human experience and behaviour; physical, economic and social environments; and the history and development of social and cultural institutions.
- develop in the student the capacity to identify, to analyse critically and to evaluate theories, concepts and arguments about the nature and activities of the individual and society.
- enable the student to collect, describe and analyse data used in studies of society, to test hypotheses, and to interpret complex data and source material.
- promote the appreciation of the way in which learning is relevant both to the culture in which the student lives, and the culture of other societies.
- develop an awareness in the student that human attitudes and beliefs are widely diverse and that the study of society requires an appreciation of such diversity.
- enable the student to recognize that the content and methodologies of the subjects in Group 3 are contestable and that their study requires the toleration of uncertainty.

3.1 Business Management (HL)

The business management course is designed to meet the current and future needs of students who want to develop their knowledge of business content, concepts and tools to assist with business decision making. Future employees, business leaders, entrepreneurs or social entrepreneurs need to be confident, creative and compassionate as change agents for business in an increasingly interconnected global marketplace.

Through the exploration of four interdisciplinary concepts-creativity, change, ethics and sustainability - this course empowers students to explore these concepts from a business perspective. Business management focuses on business functions, management processes and decision-making in contemporary contexts of strategic uncertainty. Students examine how business decisions are influenced by factors that are internal and external to an organization and how these decisions impact upon a range of internal and external stakeholders. Emphasis is placed on strategic decision-making and the operational business functions of human resource management, finance and accounts, marketing, and operations management.

The business management course encourages the application of local, national and global examples to content and concepts; the internal assessment (IA) for both SL and HL is an individual business research project that allows greater analysis and evaluation of content, concepts and context. Students can develop a deeper understanding of an organization by studying its processes through the lenses of creativity, change, ethics and sustainability.

Aims

The aims of the Business Management course at HL are to enable students to:

- develop as confident, creative and compassionate business leaders, entrepreneurs, social entrepreneurs and as change agents
- foster an informed understanding of ethical and sustainable business practices
- explore the connections between individuals, businesses and society
- engage with decision-making as a process and a skill

Having followed the Business Management course at HL students will be expected to:

- demonstrate knowledge and understanding of the business management tools and theories; the four interdisciplinary concepts (creatively, change, ethics and sustainability); real-world business problems, issues and decisions.
- apply and analyse real-world business situations and decisions by explaining the issues at stake, selecting and interpreting data, and applying appropriate tools, techniques, theories and concepts.
- synthesise and evaluate business problems, issues and decisions through critical thinking and to formulate recommendations with a strategic direction.
- demonstrate a variety of appropriate skills to produce well-structured written material using business terminology; select and use quantitative and qualitative business tools, techniques and methods; and use selected business material, from a range of primary and secondary sources.

Syllabus Outline

The curriculum model for Diploma Programme Business Management has a core curriculum for HL and SL consisting of five topics with common content and learning outcomes. In addition to the core, HL students are expected to complete extension areas of study, in topics two to five, adding both depth and breadth to the course.

HL core:

Topic 1: Introduction to business management
Topic 2: Human resource management
Topic 3: Finance and accounts
Topic 4: Marketing
Topic 5: Operations management

Group 3 Business Management - IBO Assessment Requirements

Assessment	Weight	
Higher Level	Internal Assessment (externally moderated) Research Project [1800 words]	20%
	External Assessment Paper 1 - Based on pre-released context \& background $\left[\begin{array}{ll}11 / 2 & \text { hours }] \\ \text { Paper 2 - Quantitative focus [1 3/4 hours] } \\ \text { Paper 3 - Social enterprise focus [1 } 1 / 4 \text { hours] }\end{array}\right.$	25%

3.2 Economics (HL)

Economics, a dynamic social science, is essentially about dealing with scarcity, resource allocation and the methods and processes by which choices are made in the satisfaction of human wants. As
a social science, economics uses scientific methodologies that include quantitative and qualitative elements.

The IB Diploma Programme Economics course emphasizes the economic theories of microeconomics, which deal with economic variables affecting individuals, firms and markets, and the economic theories of macroeconomics, which deal with economic variables affecting countries, governments and societies. These economic theories are to be applied to real-world issues. Prominent among these issues are fluctuations in economic activity, international trade, economic development and environmental sustainability.
The ethical dimensions involved in the application of economic theories and policies permeate throughout the economics course as students are required to consider and reflect on human endgoals and values. The economics course encourages students to develop international perspectives, fosters a concern for global issues, and raises students' awareness of their own responsibilities at a local, national and international level. The course also seeks to develop values and attitudes that will enable students to achieve a degree of personal commitment in trying to resolve these issues, appreciating our shared responsibility as citizens of an increasingly interdependent world.

Aims
The aims of the Economics course at HL are to:

- develop a critical understanding of a range of economic theories, models, ideas and tools in the areas of microeconomics, macroeconomics and the global economy.
- apply economic theories, models, ideas and tools and analyse economic data to understand and engage with real-world economic issues and problems facing individuals and societies.
- develop a conceptual understanding of individuals' and societies' economic choices, interactions, challenges and consequences of economic decision-making.

Syllabus Outline

The curriculum model for Diploma Programme Economics has a core curriculum for HL consisting of four topics with common content and learning outcomes.

Topic 1: Introduction to Economics
Topic 2: Microeconomics
Topic 3: Macroeconomics
Topic 4: The Global Economy
Group 3 Economics - IBO Assessment Requirements

	Assessment	Weight
Higher Level	Internal Assessment (externally moderated) Commentary portfolio [3 commentaries, 800 words each]	20\%
	External Assessment Paper 1 - Extended Response Paper [$11 / 4$ hours] Paper 2 - Data Response Paper [$13 / 4$ hours] Paper 3 - Policy Paper [$13 / 4$ hours]	$\begin{aligned} & 20 \% \\ & 30 \% \\ & 30 \% \end{aligned}$

3.3 Digital Society (HL)

We are (in) a digital society. Digital systems are changing our world and transforming how we think, communicate, collaborate and create.

This course invites young people to better understand this changing world and to imagine where we might go next. As partners in inquiry, students and teachers explore the impacts and implications of digital systems for people and communities in diverse real-world contexts.

Rooted in the interdisciplinary perspectives and skills of the social sciences and humanities, the course develops attributes of the IB learner profile while preparing students for further study in a variety of fields and professions. The passions, interests and experiences of young people are central to the course, which aims to empower them to become citizens who not only participate in digital society but lead it as well.

Aims

The Digital Society course invites students to develop as ethical, empathetic and creative people who address the world with individual and shared understanding, imagination and action.

The course aims indicate important milestones on a student's learning journey as they:

- focus inquiry using course concepts, content and contexts as well as real-world examples.
- explore diverse sources relevant to digital society.
- investigate impacts and implications of digital systems for people and communities.
- reflect on emerging trends, future developments and further insights.
- share discoveries about digital society with others.

Having followed the Digital Society course, students are expected to demonstrate the following assessment objectives.

Students are expected to understand, apply, analyse, evaluate and synthesize:

- course topics, enduring understandings and areas for inquiry.
- real-world examples involving digital systems.
- claims and perspectives of diverse sources.
- impacts and implications of digital systems for people and communities.
- emerging trends and future developments.
- challenges and interventions in digital society (HL only).

Students are expected to develop and refine digital society skills including:

- managing inquiry projects through planning, documentation and feedback.
- researching using diverse and relevant sources.
- thinking in critical and creative ways.
- communicating in multiple modes and media.

Syllabus Outline

The Digital Society course includes the following topics, HL extension and inquiry project component.

Introduction			
1.1 What is a digital society?			
Concepts	Content		Contexts
2.1 Change 2.2 Expression 2.3 Identity 2.4 Power 2.5 Space 2.6 Systems 2.7 Values and ethics	3.1 Data 3.2 Algorithms 3.3 Computers 3.4 Networks and the internet 3.5 Media 3.6 Artificial Intelligence 3.7 Robots and autonomous technologies		4.1 Cultural 4.2 Economic 4.3 Environmental 4.4 Health 4.5 Human knowledge 4.6 Political 4.7 Social
HL extension: challenges and interventions		Inquiry project (internal assessment)	
5.1 Global wellbeing 5.2 Governance and human rights 5.3 Sustainable development		An inquiry project into impacts and implications of digital systems for people and communities.	

Group 3 Digital Society - IBO Assessment Requirements

Assessment	Weight	
Higher Level	Internal Assessment (externally moderated) Inquiry Project - A multimedia inquiry project into impacts and implications of digital systems for people and communities	20%
	External Assessment Paper 1 - Structured questions [2 $1 / 4$ hours] Paper 2 - Source-based questions [1 $1 / 4$ hours] Paper 3 - Questions that address a HL challenge topic from a pre-released brief statement. [1 $1 / 4$ hours]	25%

3.4 Psychology (HL)

Psychology is the systematic study of behaviour and mental processes that has its roots in both the natural and social sciences and a variety of research designs are utilized. Overall, Psychology provides a unique approach to understanding modern society.

IB Psychology examines the interaction of biological, cognitive and sociocultural influences on human behaviour, thereby adopting an integrative approach. Understanding how psychological knowledge is generated, developed and applied enables students to achieve a greater understanding of themselves and appreciate the diversity of human behaviour. The ethical concerns raised by the methodology and application of psychological research are key considerations in IB Psychology.

IB Psychology takes a holistic approach that fosters intercultural understanding and respect. In the core of the IB Psychology course, the biological approach demonstrates what all humans share, whereas the cognitive and sociocultural approaches reveal the immense diversity of influences that produce human behaviour and mental processes. Cultural diversity is explored, and students are
encouraged to develop empathy for the feelings, needs and lives of others within and outside their own culture, therefore contributing to an international understanding.

Aims

The aims of the Psychology course at HL are to:

- develop an awareness of how psychological research can be applied for the benefit of human beings.
- ensure that ethical practices are upheld in psychological inquiry.
- develop an understanding of the biological, cognitive and sociocultural influences on human behaviour.
- develop an understanding of alternative explanations of behaviour.
- understand and use diverse methods of psychological inquiry.

Syllabus Outline

The Psychology syllabus at SL and HL requires the study of three perspectives or levels of analysis:

- The biological level of analysis
- The cognitive level of analysis
- The sociocultural level of analysis

Students also study two options at HL. The options have been chosen to provide continuity with the previous syllabus and to reflect developing fields in psychology. The options currently studied at QASMT are:

- Abnormal Psychology
- Health Psychology

The study of the core (approaches) provides a foundation and a broad overview of psychology, whereas the options allow students the opportunity to study a specialized area of psychology in depth. In all cases students will be required to utilize research to support their understanding and critical thinking.
Students at HL are required to plan and undertake a simple experimental study for their Internal Assessment and to produce a report of their study. A simple experimental study involves the manipulation, of a single independent variable and the measurement of the effect of this independent variable on a dependent variable, while controlling other variables. It is analysed through descriptive and inferential statistics. Students studying at HL will also study qualitative research methodologies and be expected to apply this understanding to a variety of cases.
Group 3 Psychology - IBO Assessment Requirements

	Assessment	Weight
Higher Level	Internal Assessment (externally moderated)	20%
	Experimental study	External Assessment
	Paper 1 - Core Examination [2 hours]	
	Paper 2 - Options [2 hours]	40%
	Paper 3 - Approaches to research based on research scenario [1 hour]	20%

Group 4 - Sciences

4.1 Experimental Sciences - Biology, Chemistry, Physics, Sports, Exercise and Health Science

Aims

Through studying any of these subjects, students should become aware of how scientists work and communicate with each other. While the scientific method may take on a wide variety of forms, it is the emphasis on a practical approach through experimental work that characterizes these subjects.

The aims enable students, through the overarching theme of the Nature of science, to:

- appreciate scientific study and creativity within a global context through stimulating and challenging opportunities.
- acquire a body of knowledge, methods and techniques that characterize science and technology.
- apply and use a body of knowledge, methods and techniques that characterize science and technology.
- develop an ability to analyse, evaluate and synthesize scientific information.
- develop a critical awareness of the need for, and the value of, effective collaboration and communication during scientific activities.
- develop experimental and investigative scientific skills including the use of current technologies.
- develop and apply 21st Century communication skills in the study of science.
- become critically aware, as global citizens, of the ethical implications of using science and technology.
- develop an appreciation of the possibilities and limitations of science and technology.
- develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge.

The assessment objectives for these subjects reflect those parts of the aims that will be formally assessed either internally or externally. It is the intention of all Diploma Programme experimental science courses that students achieve the following objectives.

1. Students demonstrate knowledge of:

- terminology, facts and concepts.
- skills, techniques and methodologies.

2. Students understand and apply:

- terminology and concepts.
- skills, techniques and methodologies.

3. Students analyse, evaluate and synthesise:

- experimental procedures.
- primary and secondary data.

- trends, patterns and predictions.

4. Students demonstrate the application and skills necessary to carry out insightful and ethical investigations.

Candidates complete a Collaborative Sciences Project which requires them to carry out an interdisciplinary, practical based research investigation within a specified theme. This work forms part of the IB requirement and is submitted in Year 12.

4.1.1 Biology (SL/HL)

Biology is an experimental science that combines academic study with the acquisition of practical and investigational skills. Biologists attempt to understand the living world at all levels using many different approaches and techniques. At one end of the scale is the cell, its molecular construction and complex metabolic reactions. At the other end of the scale biologists investigate the interactions that make whole ecosystems function. Apart from being a subject worthy of study in its own right, Biology can be used as a prerequisite for many other courses in higher education, such as medicine, biological science and environmental science and serves as useful preparation for employment.

Syllabus Outline

Syllabus content:

A. Unity and diversity
B. Form and function
C. Interaction and interdependence
D. Continuity and change

Additional HL:

*Additional Higher-Level content is blended throughout the core. It is highlighted in the new syllabus guide for biology first assessment 2025.

Experimental Program

- Practical activities
- Scientific investigation (Internal assessment - IA)
- Collaborative Sciences Project

The aim of the syllabus is to integrate concepts, topic content and the nature of science through inquiry.

Theme	Level of organization			
	1. Molecules	2. Cells	3. Organisms	4. Ecosystems
A Unity and diversity	Common ancestry has given living organisms many shared features while evolution has resulted in the rich biodiversity of life on Earth.			
	A1.1 Water A1.2 Nucleic acids	A2.1 Origins of cells [HL only] A2.2 Cell structure A2.3 Viruses [HL only]	A3.1 Diversity of organisms A3.2 Classification and cladistics $[H L$ only]	A4.1 Evolution and speciation A4.2 Conservation of biodiversity
B Form and function	Adaptations are forms that correspond to function. These adaptations persist from generation to generation because they increase the chances of survival.			
	B1.1 Carbohydrates B2.1 Membranes and lipids and membrane transport B1.2 Proteins B2.2 Organelles and compartmentaliza- tion B2.3 Cell specialization		B3.1 Gas exchange B3.2 Transport B3.3 Muscle and motility [HL only]	B4.1 Adaptation to environment B4.2 Ecological niches
C Interaction and interdependence	Systems are based on interactions, interdependence and integration of components. Systems result in emergence of new properties at each level of biological organization.			
	C1.1 Enzymes and metabolism C1.2 Cell respiration C1.3 Photosynthesis	C2.1 Chemical signalling [HL only] C2.2 Neural signalling	C3.1 Integration of body systems C3.2 Defence against disease	C4.1 Populations and communities C4.2 Transfers of energy and matter
D Continuity and change	Living things have mechanisms for maintaining equilibrium and for bringing about transformation. Environmental change is a driver of evolution by natural selection.			
	D1.1 DNA replication D1.2 Protein synthesis D1.3 Mutations and gene editing	D2.1 Cell and nuclear division D2.2 Gene expression [HL only] D2.3 Water potential	D3.1 Reproduction D3.2 Inheritance D3.3 Homeostasis	D4.1 Natural selection D4.2 Stability and change D4.3 Climate change

Group 4 Biology - IBO Assessment Requirements

	Assessment	Weight
Standard Level	Internal Assessment (externally moderated) One practical scientific investigation of your choice taking about 10 hours. The investigation should cover a topic that is commensurate with the level of the course of study.	20\%
	External Assessment Paper 1 - Multiple Choice and Short Response [$11 / 2$ hours] Paper 2 - Short and Extended Response [$11 / 2$ hours]	$\begin{aligned} & 36 \% \\ & 44 \% \end{aligned}$
Higher Level	Internal Assessment (externally moderated) One practical scientific investigation of your choice taking about 10 hours. The investigation should cover a topic that is commensurate with the level of the course of study.	20\%
	External Assessment Paper 1 - Multiple Choice and Short Response [2 hours] Paper 2 - Short and Extended Response [$21 / 2$ hours]	$\begin{aligned} & 36 \% \\ & 44 \% \end{aligned}$

4.1.2 Chemistry (SL/HL)

Chemistry is an experimental science that combines academic study with the acquisition of practical and investigational skills. It is called the central science as chemical principles underpin both the physical environment in which we live and all biological systems. Apart from being a subject worthy of study in its own right, Chemistry can be used as a prerequisite for many other courses in higher education, such as medicine, biological science and environmental science and serves as useful preparation for employment.

Syllabus Outline

Syllabus content:

Structure 1. Models of the particulate nature of matter Structure 2. Models of bonding and structure
Structure 3. Classification of matter
Reactivity 1. What drives chemical reactions?
Reactivity 2. How much, how fast and how far?
Reactivity 3. What are the mechanisms of chemical change?

Additional HL:

*Additional Higher-Level content is blended throughout the core. It is highlighted in the new syllabus guide for chemistry first assessment 2025.

Experimental programme:

- Practical work
- Scientific investigation (Internal assessment - IA)
- Collaborative Sciences Project

Group 4 Chemistry - IBO Assessment Requirements

	Assessment	Weight
Standard Level	Internal Assessment (externally moderated) One practical scientific investigation of your choice taking about 10 hours. The investigation should cover a topic that is commensurate with the level of the course of study.	20\%
	External Assessment Paper 1 - Multiple choice questions and data-based questions [$11 / 2$ hours] Paper 2 - Short answer and extended response [$11 / 2$ hours]	$\begin{aligned} & 36 \% \\ & 44 \% \end{aligned}$
Higher Level	Internal Assessment (externally moderated) One practical scientific investigation of your choice taking about 10 hours. The investigation should cover a topic that is commensurate with the level of the course of study.	20\%
	External Assessment Paper 1 - Multiple choice questions and data-based questions [1 $1 / 2$ hours] Paper 2 - Short answer and extended response [2 $1 / 2$ hours]	$\begin{aligned} & 36 \% \\ & 44 \% \end{aligned}$

4.1.3 Physics (SL/HL)

Physics is an experimental science that combines academic study with the acquisition of practical and investigational skills. It is called the most fundamental of the experimental sciences as it seeks to explain the universe itself, from the very smallest particles - currently accepted as quarks (perhaps $10^{-17} \mathrm{~m}$ in size), which may be truly fundamental - to the vast distances between galaxies like the Andromeda galaxy ($10^{24} \mathrm{~m}$). Students with an aptitude in Mathematics or simply a desire to do fundamental scientific research in fields like Astronomy, Nanotechnology, Rocketry, or Photonics (to name a few), should consider studying this subject, it can also be used as a prerequisite for many other courses in higher education, such as science and engineering.

Syllabus Outline

Syllabus content:

A. Space, time and motion
B. The particulate nature of matter
C. Wave behaviour
D. Fields
E. Nuclear and quantum physics

Experimental programme:

- Practical work
- Scientific investigation (Internal assessment - IA)
- Collaborative Sciences Project

Additional HL:

*Additional Higher-Level content is blended throughout the core. It is highlighted in the new syllabus guide for chemistry first assessment 2025.

Group 4 Physics - IBO Assessment Requirements

	Assessment	Weight
Standard Level	Internal Assessment (externally moderated) One practical scientific investigation of your choice taking about 10 hours. The investigation should cover a topic that is commensurate with the level of the course of study.	20\%
	External Assessment Paper 1 - Multiple choice questions and data-based questions [$11 / 2$ hours] Paper 2 - Short answer and extended response [$1 \frac{1}{2}$ hours]	$\begin{aligned} & 36 \% \\ & 44 \% \end{aligned}$
Higher Level	Internal Assessment (externally moderated) One practical scientific investigation of your choice taking about 10 hours. The investigation should cover a topic that is commensurate with the level of the course of study.	20\%
	External Assessment Paper 1 - Multiple choice questions and data-based questions [$11 / 2$ hours] Paper 2 - Short answer and extended response [$21 / 2$ hours]	$\begin{aligned} & 36 \% \\ & 44 \% \end{aligned}$

4.1.4 Sports, Exercise and Health Science (HL)

Sports, Exercise and Health Science, is an experimental science dedicated to exploring the complexities of human health and well-being as well as athletic performance. It is an applied science course within group 4 that merges insights from physiology, biomechanics, and psychology to explore the intricate connections between physical activity, health, and performance. SEHS empowers students to blend theoretical knowledge with practical experimentation, fostering a deep understanding of how the body responds to exercise and training.

Through an inquiry driven approach, students gain a holistic perspective on the interplay between health and performance. Beyond the classroom, SEHS offers tangible benefits, enabling students to apply their learning to enhance personal fitness, optimise training, and contribute to broader community health initiatives. SEHS is a vital discipline, equipping students with the expertise needed to promote well-being and athletic excellence in an ever-evolving world and serves as a foundation for further education in fields related to health, fitness, physiology, nutrition, biomechanics and sports medicine.

Syllabus Outline

Syllabus content:

E. Exercise physiology and nutrition of the human body
F. Biomechanics
G. Sports psychology and motor learning

Additional HL:

*Additional Higher-Level content is blended throughout the core. It is highlighted in the new syllabus guide for physics first assessment 2025.

Experimental Program

- Practical activities
- Scientific investigation (Internal assessment - IA)
- Collaborative Sciences Project

The aim of the syllabus is to integrate concepts, topic content and the nature of science (NOS), through inquiry.
A. Exercise physiology and nutrition of
the human body
A. 1 Communication

- A.1.1 Inter-system communication
- A.1.2 Maintaining homeostasis
- A.1.3 Transport
A. 2 Hydration and nutrition
- A.2.1 Water and electrolyte balance
- A.2.2 Fuelling for health and performance
- A.2.3 Energy systems
A. 3 Response
- A.3.1 Qualities of training
- A.3.2 Benefits to health of being active
A.3.3 Fatigue and recovery
B. Biomechanics
B. 1 Generating movement in the body
B.1.1 Anatomical position, planes and movement
- B.1.2 Structure and function of connective tissues and joints
- B.1.3 Muscular function
- B.1.4 Levers in movement and sport
B. 2 Forces, motion and movement
- B.2.1 Newton's laws of motion
- B.2.2 Fluid mechanics
- B.2.3 Movement analysis and its applications
B. 3 Injury
- B.3.1 Causes of injury
- B.3.2 Interventions related to injury
C. Sports psychology and motor learning

$$
\text { C. } 1 \text { Individual differences }
$$

- C.1.1 Personality
- C.1.2 Mental toughness
C. 2 Motor learning
- C.2.1 Motor learning processes
- C.2.2 Attentional control
C. 3 Motivation
- C.3.1 Achievement motivation
- C.3.2 Self-determination
- C.3.3 Motivational climate
C. 4 Stress and coping
- C.4.1 Arousal and anxiety
- C.4.2 Coping
C. 5 Psychological skills
- C.5.1 Goal setting
- C.5.2 Imagery

Group 4 SEHS - IBO Assessment Requirements

	Assessment	Weight
Higher Level	Internal Assessment (externally moderated) One practical scientific investigation of choice taking about 10 hours. The investigation should cover a topic that is commensurate with the level of the course of study.	24\%
	External Assessment Paper 1 - Multiple choice questions and data-based questions [1 $1 / 2$ hours] Paper 2 - Short answer and extended response [$21 / 2$ hours]	$\begin{aligned} & 36 \% \\ & 40 \% \end{aligned}$

4.2 Computer Science (HL)

Computer Science requires an understanding of the fundamental concepts of computational thinking as well as knowledge of how computers and other digital devices operate. The Diploma Programme Computer Science course is engaging, accessible, inspiring and rigorous. The course:

- draws on a wide spectrum of knowledge.
- enables and empowers innovation, exploration and the acquisition of further knowledge.
- interacts with and influences cultures, society and how individuals and societies behave.
- raises ethical issues; and
- is underpinned by computational thinking.

Aims

Diploma Programme Computer Science students should become aware of how computer scientists work, communicate with each other and with other stakeholders in the successful development and implementation of IT solutions. While the methodology used to solve problems in computer science may take a wide variety of forms, the Group 4 Computer Science course emphasizes the need for both a theoretical and practical approach.

It is in this context that the Diploma Programme Computer Science course should aim to:

- provide opportunities for study and creativity within a global context that will stimulate and challenge students developing the skills necessary for independent and lifelong learning.
- provide a body of knowledge, methods and techniques that characterize computer science.
- enable students to apply and use a body of knowledge, methods and techniques that characterize computer science.
- demonstrate initiative in applying thinking skills critically to identify and resolve complex problems.
- engender an awareness of the need for, and the value of, effective collaboration and communication in resolving complex problems.
- develop logical and critical thinking as well as experimental, investigative and problem-solving skills.
- develop and apply the students' information and communication technology skills in the study of computer science to communicate information confidently and effectively.
- raise awareness of the moral, ethical, social, economic and environmental implications of using science and technology.
- develop an appreciation of the possibilities and limitations associated with continued developments in IT systems and computer science.
- encourage an understanding of the relationships between scientific disciplines and the overarching nature of the scientific method.

The assessment objectives for all Group 4 subjects reflect those parts of the aims that will be formally assessed either internally or externally. Wherever appropriate, the assessment will draw upon a range of contexts and identify the social, moral and economic effects of science and technology.

It is the intention of the Diploma Programme Computer Science course that students achieve the following objectives.

1. Students demonstrate knowledge and understanding of:

- facts, concepts and terminology.
- methodologies and techniques.
- computer science terminology.
- methods of presenting information.

2. Students apply and use:

- relevant facts and concepts.
- relevant design methods and techniques.
- terminology to communicate effectively.
- appropriate communication methods to present information.

3. Students construct, analyse, evaluate and formulate:

- success criteria, solution specifications including task outlines, designs and test plans
- appropriate techniques within a specified solution.

4. Students demonstrate the personal skills of cooperation and perseverance as well as appropriate technical skills for effective problem-solving in developing a specified product.

Candidates complete a Group 4 project which requires them to conduct an interdisciplinary, practical based research investigation within a specified theme.

Syllabus Outline

Core:

Topic 1: System fundamentals
Topic 2: Computer organization
Topic 3: Networks
Topic 4: Computational thinking, problemsolving and programming

Option: Object-oriented programming (OOP)

Internal assessment

- Solution - Practical application of skills through the development of a product and associated documentation
- Collaborative Sciences Project

Group 4 Computer Science - IBO Assessment

 Requirements
Additional HL:

Topic 5: Abstract data structures
Topic 6: Resource management
Topic 7: Control
Case study - issued annually by the IB

	Assessment	Weight
Higher Level	Internal Assessment (externally moderated) Solution - Practical application of skills through the development of a product and associated documentation	20%
	External Assessment Paper 1 - Short Answer and Structured questions [2 $1 / 4$ hours]	40%
	20%	

4.3 Environmental Systems and Societies - ESS (HL)

ESS is an interdisciplinary Group 3 and 4 course that is offered at Higher Level (HL). As an interdisciplinary course, ESS is designed to combine the methodology, techniques and knowledge associated with Group 4 (Sciences) with those associated with Group 3 (Individuals and Societies). Because it is an interdisciplinary course, students can study ESS and have it count as either a Group 3 or a Group 4 course. It is firmly grounded in both a scientific exploration of environmental systems in their structure and function and in the exploration of cultural, economic, ethical, political, and social interactions of societies with the environment.

Aims

The aims of the ESS course are to enable students to:

- acquire the knowledge and understandings of environmental systems at a variety of scales.
- apply the knowledge, methodologies and skills to analyse environmental systems and issues at a variety of scales.
- appreciate the dynamic interconnectedness between environmental systems and societies.
- value the combination of personal, local and global perspectives in making informed decisions and taking responsible actions on environmental issues.
- be critically aware that resources are finite, and that these could be inequitably distributed and exploited, and that management of these inequities is the key to sustainability.
- develop awareness of the diversity of environmental value systems.
- develop critical awareness that environmental problems are caused and solved by decisions made by individuals and societies that are based on different areas of knowledge.
- engage with the controversies that surround a variety of environmental issues.
- create innovative solutions to environmental issues by engaging actively in local and global contexts.

It is the intention of this course that students, in the context of environmental systems and related issues, can fulfill the following assessment objectives.

1. Students demonstrate knowledge and understanding of relevant:

- facts and concepts.
- methodologies and techniques.
- values and attitudes.

2. Students apply this knowledge and understanding in the analysis of:

- explanations, concepts and theories data and models.
- case studies in unfamiliar contexts.
- arguments and value systems.

3. Students evaluate, justify, and synthesize, as appropriate:

- explanations, theories, and models.
- arguments and proposed solutions.
- methods of fieldwork and investigation.
- cultural viewpoints and value systems.

4. Students engage with investigations of environmental and societal issues at the local and global level through:

- evaluating the political, economic, and social contexts of issues.
- selecting and applying the appropriate research and practical skills necessary to conduct investigations.
- suggesting collaborative and innovative solutions that demonstrate awareness and respect for the cultural differences and value systems of others.

Syllabus Outline

Syllabus content:

Topic 1 - Foundation (perspectives, systems, sustainability)
Topic 2 - Ecology
Topic 3 - Biodiversity and conservation
Topic 4 - Water
Topic 5 - Land
Topic 6 - Atmosphere and climate change
Topic 7 - Natural resources
Topic 8 - Human populations and urban systems

Experimental Program

- Practical activities
- Individual investigation (Internal assessment - IA)
- Collaborative Sciences Project

Group 4 Environmental Systems and Societies - IBO Assessment Requirements

Assessment				Weight
	Higher Level	Internal Assessment (externally moderated)		
	Individual investigation	30%		
	External Assessment			
	Paper 1 - Case Study [2 hours]	20%		
	Paper 2 - Short answers and structured essays [2 $1 / 2$ hours]	50%		

GROUP 5 - Mathematics

Mathematics has been described as the study of structure, order and relation that has evolved from the practices of counting, measuring and describing objects. Mathematics provides a unique language to describe, explore and communicate the nature of the world we live in, as well as being a constantly building body of knowledge and truth that is distinctive in its certainty. These two aspects of Mathematics, a discipline that is studied for its intrinsic pleasure, and a means to explore and understand the world we live in, are both separate yet closely linked.

Mathematics is driven by abstract concepts and generalization. This mathematics is drawn out of ideas and develops through linking these ideas and developing new ones. These mathematical ideas may have no immediate practical application. Doing such mathematics is about digging deeper to increase mathematical knowledge and truth. The new knowledge is presented in the form of theorems that have been built from axioms and logical mathematical arguments and a theorem is only accepted as true when it has been proven. The body of knowledge that makes up mathematics is not fixed; it has grown during human history and is growing at an increasing rate.

The side of mathematics that is based on describing our world and solving practical problems is often carried out in the context of another area of study. Mathematics is used in a diverse range of disciplines as both a language and a tool to explore the universe; alongside this its applications include analysing trends, making predictions, quantifying risk, exploring relationships and interdependence.

The two courses available to Diploma Programme (DP) students express both the differences that exist in mathematics described above and the connections between them. These two courses might approach mathematics from different perspectives, but they are connected by the same mathematical body of knowledge, ways of thinking and approaches to problems. The differences in the courses may also be related to the types of tools, for instance technology, that are used to solve abstract or practical problems. The next section will describe in more detail the two available courses.

It should be noted that both IB Mathematics courses (SL and HL) are identified as meeting the prerequisite for Mathematical Methods at The University of Queensland. The Mathematics Analysis and Approaches HL subject also meets the prerequisite for Specialist Mathematics.

Summary of courses available

Individual students have different needs, aspirations, interests and abilities. For this reason, there are two different subjects in mathematics, each available at SL and HL These courses are designed for different types of students: those who wish to study mathematics as a subject in its own right or to pursue their interests in areas related to mathematics, and those who wish to gain understanding and competence in how mathematics relates to the real world and to other subjects. Each course is designed to meet the needs of a particular group of students. Mathematics Analysis and Approaches and Mathematics Applications and Interpretation are both offered at SL and HL. Therefore, great care should be taken to select the course and level that is most appropriate for an individual student.

In making this selection, individual students should consider:

- their own abilities in mathematics and the type of mathematics in which they can be successful.
- their own interest in mathematics and those areas of the subject that may hold the most interest for them.
- their other choices of subjects within the framework of the Diploma Programme.
- their academic plans, in particular the subjects they wish to study in the future.
- their choice of career.

Aims

The aim of the all the mathematics subjects in Group 5 is to enable students to:

- develop a curiosity and enjoyment of mathematics and appreciate its elegance and power.
- develop an understanding of the concepts, principles and nature of mathematics.
- communicate mathematics clearly, concisely and confidently in a variety of contexts.
- develop logical and creative thinking, and patience and persistence in problem solving to instil confidence in using mathematics.
- employ and refine their powers of abstraction and generalization.
- take action to apply and transfer skills to alternative situations, to other areas of knowledge and to future developments in their local and global communities.
- appreciate how developments in technology and mathematics influence each other.
- appreciate the moral, social and ethical questions arising from the work of mathematicians and the applications of mathematics.
- appreciate the universality of mathematics and its multicultural, international and historical perspectives.
- appreciate the contribution of mathematics to other disciplines, and as a particular "area of knowledge" in the TOK course.
- develop the ability to reflect critically upon their own work and the work of others.
- independently and collaboratively extend their understanding of mathematics.

Problem solving is central to learning mathematics and involves the acquisition of mathematical skills and concepts in a wide range of situations, including non-routine, open-ended and real-world problems. Having followed a DP Mathematics course, students will be expected to demonstrate:

- knowledge and understanding - recall, select and use their knowledge of mathematical facts, concepts and techniques in a variety of familiar and unfamiliar contexts.
- problem solving - recall, select and use their knowledge of mathematical skills, results and models in both abstract and real-world contexts to solve problems.
- communication and interpretation - transform common realistic contexts into mathematics; comment on the context; sketch or draw mathematical diagrams, graphs or constructions both on paper and using technology; record methods, solutions and conclusions using standardized notation; use appropriate notation and terminology.
- technology - use technology accurately, appropriately and efficiently both to explore new ideas and to solve problems.
- reasoning - construct mathematical arguments through use of precise statements, logical deduction and inference and by the manipulation of mathematical expressions.
- inquiry approaches - investigate unfamiliar situations, both abstract and from the real world, involving organizing and analyzing information, making conjectures, drawing conclusions, and testing their validity.

Syllabus Outline

Students are required to study five topics: Number and algebra; Functions; Geometry and trigonometry; Statistics and probability; and Calculus which are assessed through two external examinations at the end of the course if studying at Standard Level and three if studying at Higher Level.

The students are also expected to complete a Mathematical Exploration which is a piece of work based on an area of the mathematics of their choice. It enables students to demonstrate the application of their skills and knowledge, and to pursue their personal interests, without the time limitations and other constraints that are associated with written examinations.

5.1 Mathematics Analysis and Approaches (SL/HL)

Mathematics Analysis and Approaches is for students who enjoy developing their mathematics to become fluent in the construction of mathematical arguments and develop strong skills in mathematical thinking. They will also be fascinated by exploring real and abstract applications of these ideas, with and without technology. Students who take Mathematics Analysis and Approaches will be those who enjoy the thrill of mathematical problem solving and generalization.

This course recognizes the need for analytical expertise in a world where innovation is increasingly dependent on a deep understanding of mathematics. This course includes topics that are both traditionally part of a pre-university mathematics course (for example, functions, trigonometry, calculus) as well as topics that are amenable to investigation, conjecture and proof, for instance the study of sequences and series at both SL and HL, and proof by induction at HL.

The course allows the use of technology, as fluency in relevant mathematical software and handheld technology is important regardless of choice of course. However, Mathematics Analysis and Approaches has a strong emphasis on the ability to construct, communicate and justify correct mathematical arguments.

Mathematics Analysis and Approaches - Distinction between SL and HL

Students who choose Mathematics Analysis and Approaches at SL or HL should be comfortable in the manipulation of algebraic expressions and enjoy the recognition of patterns and understand the mathematical generalization of these patterns. Students who wish to take Mathematics Analysis and Approaches at Higher Level will have strong algebraic skills and the ability to understand simple proof. They will be students who enjoy spending time with problems and get pleasure and satisfaction from solving challenging problems.

Group 5 Mathematics Analysis and Approaches - IBO Assessment Requirements

	Assessment	Weight
Standard Level	Internal Assessment (externally moderated) Mathematical Exploration (mathematical investigation and mathematical modelling)	20\%
	External Assessment Paper 1 - Non calculator examination [$11 / 2$ hours] Paper 2 - Calculator examination [$11 / 2$ hours]	$\begin{aligned} & 40 \% \\ & 40 \% \end{aligned}$
Higher Level	Internal Assessment (externally moderated) Mathematical Exploration (mathematical investigation and mathematical modelling)	20\%
	External Assessment Paper 1 - Non calculator examination [2 hours] Paper 2 - Calculator examination [2 hours] Paper 3 - Extended response, problem solving and modelling [1 hour]	$\begin{aligned} & 30 \% \\ & 30 \% \\ & 20 \% \end{aligned}$

5.2 Mathematics Applications and Interpretation (SL/HL)

Mathematics Applications and Interpretation is for students who are interested in developing their mathematics for describing our world and solving practical problems. They will also be interested in harnessing the power of technology alongside exploring mathematical models. Students who take Mathematics Applications and Interpretation will be those who enjoy mathematics best when seen in a practical context.

This course recognizes the increasing role that mathematics and technology play in a diverse range of fields in a data-rich world. As such, it emphasizes the meaning of mathematics in context by focusing on topics that are often used as applications or in mathematical modelling. To give this understanding a firm base, this course also includes topics that are traditionally part of a preuniversity mathematics course such as calculus and statistics.

The course makes extensive use of technology to allow students to explore and construct mathematical models. Mathematics Applications and Interpretation will develop mathematical thinking, often in the context of a practical problem and using technology to justify conjectures.

Mathematics Applications and Interpretation - Distinction between SL and HL

Students who choose Mathematics Applications and Interpretation at SL or HL should enjoy seeing mathematics used in real-world contexts and to solve real-world problems. Students who wish to take Mathematics Applications and Interpretation at Higher Level will have good algebraic skills and experience of solving real-world problems. They will be students who get pleasure and satisfaction when exploring challenging problems and who are comfortable to undertake this exploration using technology.

Group 5 Mathematics Applications and Interpretation - IBO Assessment Requirements

	Assessment	Weight
Standard Level	Internal Assessment (externally moderated) Mathematical Exploration (mathematical investigation and mathematical modelling)	20\%
	External Assessment Paper 1 - Calculator examination [$11 / 2$ hours] Paper 2 - Calculator examination [1 $1 / 2$ hours]	$\begin{aligned} & 40 \% \\ & 40 \% \end{aligned}$
Higher Level	Internal Assessment (externally moderated) Mathematical Exploration (mathematical investigation and mathematical modelling)	20\%
	External Assessment Paper 1 - Calculator examination [2 hours] Paper 2 - Calculator examination [2 hours] Paper 3 - Extended response, problem solving and modelling [1 hour]	$\begin{aligned} & 30 \% \\ & 30 \% \\ & 20 \% \end{aligned}$

Subject selection

Inspiring Great Minds

Student Name: \qquad Instep: \qquad
Use this form to prepare for your online subject selection. Make your selection by ticking the relevant \square in each group.

Group 1 - choose 1 subject	Group 2* - choose 1 subject	Group 3-choose 1 or 2 subjects	Group 4 - choose 1 or 2 subjects	Group 5 - choose 1 subject
English A Language and Literature - Standard Level \square English A Language and Literature - Higher Level	Spanish ab initio - Standard Level Chinese B - Standard Level Chinese B - Higher Level French B - Standard Level French B - Higher Level German B - Standard Level German B - Higher Level Japanese B - Standard Level Japanese B - Higher Level Latin B - Standard Level Latin B - Higher Level Language A Literature Standard Level (Group 1 subject -School-Supported Self Study in Mother Tongue - by approval only*)	Business Management Higher Level Economics - Higher Level Digital Society - Higher Level Psychology - Higher Level Environmental Systems and Societies - Higher Level	Biology - Standard Level Biology - Higher Level Chemistry - Standard Level Chemistry - Higher Level Computer Science - Higher Level Physics - Standard Level Physics - Higher Level Sports, Exercise and Health Science - Higher Level Environmental Systems and Societies - Higher Level	Mathematics Analysis and Approaches - Standard Level Mathematics Analysis and Approaches - Higher Level Mathematics Applications and Interpretation - Standard Level Mathematics Applications and Interpretation - Higher Level

Because of the increased rigour of HL subjects, students should select these first. Your HL subject selection should reflect those subjects in which you are performing best.

I have chosen one subject in Groups 1, 2, 3, 4 and 5	Yes \square	No \square
I have chosen one additional subject in either Group 3 or 4	Yes \square	No \square
I have nominated 3 Higher Level subjects \& 3 Standard Level subjects.	Yes \square	No \square
I understand that my subject selections will depend on the number of studes	Yes \square	No \square

[^0]: ${ }^{1}$ Academic Integrity. (2020). Cardiff, Wales: International Baccalaureate Organization.

